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Mapping tropical coastal vegetation using JERS-1 and ERS-1 radar
data with a decision tree classi� er
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Abstract. The objective of this paper is to investigate the complementarity of
JERS-1 and ERS-1 data for mapping coastal tropical regions. We use a decision
tree classi� er to classify a coastal region of Gabon and describe the feature
contribution using the decision tree diagram. The JERS-1 Global Rain Forest
Mapping (GRFM) and ERS-1 Central Africa Mosaic Project (CAMP) datasets
are used. The result is a land cover map of the west coast of Gabon. The analysis
explicitly shows the complementary characteristicsof the L- and C-band Synthetic
Aperture Radar (SAR) instruments. We demonstrate the usefulness of combined
use of L- and C-band data for large area mapping of coastal regions, especially
in � ooded areas for discrimination of high and low mangroves as well as grasses
and tree swamps. The overall classi� cation accuracy increases by 18% over single
band classi� cation.

1. Introduction
The objective of this paper is to investigate the complementarity of ERS-1 and

JERS-1 Synthetic Aperture Radar (SAR) data for mapping of coastal tropical regions.
We use SAR image mosaics constructed in the frame of two continental-scale radar
mapping projects: the ERS-1 TREES CAMP (Central Africa Mosaic Project)
(Malingreau and Duchossois 1995, De Grandi et al. 1999) and JERS-1 GRFM
(Global Rain Forest Mapping) (Rosenqvist 1996, De Grandi et al. 2000a). The
former is a European Commission project executed at the Joint Research Centre
(JRC). The latter was initiated by NASDA (National Space Development Agency
of Japan) and the JRC (Joint Research Center), Jet Propulsion Laboratory and
NASA Alaska SAR Facility acted as the main processing nodes. We focus our study
on a coastal area of Gabon.

In moist tropical forest regions, the quasi-permanent cloud cover does not allow
for on-demand optical data acquisition of land cover. Thus, in these regions radar
data becomes invaluable for mapping land cover (Nezry et al. 1993, Luckman et al.
1997), hydrography and � oods (Ford and Casey 1988, Hess et al. 1990, 1995, Kux
et al. 1993, Kasischke et al. 1997). Even if ERS-1 (CVV, C-band vertical polarization)
and JERS-1 (LHH, L-band horizontal polarization) are expected to individually
provide poor information on tropical forest vegetation species (Kasischke et al. 1997,
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Saatchi et al. 1997), they still hold much potential for distinction of low and high
biomass as well as wetland mapping (Hess et al. 1995, Costa et al. 1998). Therefore,
this types of data is ideal for tropical coastal mapping. For example, � ooded forests
can be mapped using L-band data (Hess et al. 1995, Kasischke et al. 1997), while
CVV data performs better for mapping non-wooded wetlands (Kasischke et al.
1997), which are in general transparent at L-band. At C-band, � ooded forest can be
distinguished depending on the canopy structure (e.g. canopy openness, leaf area)
(Hess et al. 1990, Kasischke et al. 1997) and is eVective in mapping swamp forest
and low land forest in the tropical Africa domain (De Grandi et al. 2000b).

We use a decision tree classi� er to analyse the data (Breiman et al. 1984, Simard
et al. 2000) because it is independent of data probability distribution. It also allows
for eYcient use of each input feature in the sense that each feature is used only if it
is the best for cleaning a particular group of data samples. A decision tree is a set
of hierarchical rules which successively split the data into purer groups. The resulting
decision tree diagram is explicit and is useful to assess feature contributions and
relations.

In §2 we report on the methodology followed in the compilation of a composite
ERS–JERS mosaic. In §3 the thematic classes are described and a brief introduction
to the classi� er is presented in §4. The analysis, validation and conclusions are
discussed in §5.

2. GRFM and CAMP data
We used extracts from the GRFM and CAMP mosaics located on the coast of

Gabon between latitude 0° 25ê 2.8 to 3° 22ê 1.9 and longitude 8° 28ê 40.8 to 10° 29ê 37.8 .
The GRFM mosaic was acquired in November 1996 and the ERS-1 mosaic in August
1994. The GRFM Africa mosaic was derived from these acquisitions by a multi-
resolution decomposition, geolocation and tiling of the individual scenes using a direct
Mercator projection. Details on the mosaic processing are given in De Grandi et al.
(2000a). The CAMP mosaic is described in De Grandi et al. (1997, 1999). Although
the multi-resolution decomposition in the GRFM and CAMP processors generates a
pyramid of multi-resolution products, only the so called baseline mosaics with a pixel
size of 100m (called framelets) are used in the combined dataset.

The GRFM Africa mosaic was processed using an algorithm which assures an
internal geometric consistency at sub-pixel accuracy where each framelet is only
allowed to translate and rotate; moreover the addition of external ground control
points (GCPs) derived from the World Vector Shoreline database along the coastline
gives an absolute geolocation residual mean squared error of 240 m. The GRFM
dataset was taken as a reference system and the C-band ERS layer composed by
rectifying each ERS 100m framelet to the reference mosaic. The recti� cation proced-
ure uses polynomial warping and a set of tie points measured automatically by cross-
correlation between each ERS framelet projected in the Mercator system and the
corresponding JERS mosaic subset. Most of the Central Africa basin covered by the
ERS mosaic shows very little relief, with some exception for instance in Gabon. In
areas of moderate to high relief (from 600 to 1800m) the registration accuracy will
however be aVected by topography. A number of checks are performed to retain
only reliable tie points (windows with a well-de� ned cross correlation peak). The
selected tie-points are used to determine the mapping coeYcient by least square (LS)
estimation in a polynomial spatial warping procedure. Framelets with poor � tting
statistics are � agged in the automatic mosaic compilation procedure and handled
by a semi-automatic registration procedure, with interactive tie-point selection. For
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Figure 1. Colour composite image of ERS-1 (red) and JERS-1 (blue). The boxes are shown
at full resolution in � gure 3. The image covers the area from 0° 25ê 2.77 N 8° 28ê
40.81 E (top left corner) to 3° 22ê 1.88 S 10° 29 ê 37.76 E (bottom right corner).

a more detailed discussion we refer the reader to Mayaux et al. (2002). In our case,
� ve ERS-1 framelets (100m resolution images) were co-registered to the GRFM
JERS-1 Mosaic. Figure 1 shows the ERS–JERS colour composite image.
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(a) (b)

Figure 2. (a) Rhizophora racemosa with a thick layer of aerial roots and 20 m high canopy.
(b) Grasses and papyrus between 2 and 3 m height. Some woody shrub is also found
in those areas.

(a)

0º 52’ 56” S  9º 32’ 28” E 

0º 7’ 32”N  9º 40’ 51” E 

(b)

Figure 3. (a) Extract from � gure 1 showing the diVerence in ERS and JERS images for
� ooded forest which appear yellow (i.e. both high backscatter) and (b) papyrus areas
which are blue due to higher relative backscatter in JERS images.

3. Thematic classes
The study area covers a major portion of the Ogooué river basin along the coast

of Gabon (� gure 1). The land cover types range from grassland and woody savannas
to evergreen dense forests. Along the Ogooué basin in the west, the landscape is � at,
resulting in areas of very slow drainage and creating wet and sometimes inundated
pockets along the river and the coast. The � ood plains of the Ogooué river and the
mangrove areas along the coast are the main focus of this study. The vegetation
types in the region fall in the Guineo-Congolian ecological domain and their ecolo-
gical signi� cance and de� nition can be found in several references (Richards 1979,
White 1983). In general the de� nitions found in the literature do not include a
detailed geographical location and thus are not suitable for direct implementation
in land cover classi� cation from high resolution remote sensing data. In this study,
we have used printed land cover maps (OIBT 1998) from Ministère des eaux et forêts
et du reboisement as a geographical guideline for choosing training areas and validat-
ing the derived classi� ed map. The maps were produced by photo-interpretation of
aerial and spaceborne data and ground surveys. There is no formal error associated
with the map. Moreover our recent � eld data collection (July 2000) has shown that
the classes and their respective training sites were correctly assigned. We have visually
chosen 10 dominant vegetation types in the study area for classi� cation. These are:
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closed forest, open forest, urban, grass savanna, woody savanna, raYa, � ooded forest,
grass swamp, low mangrove and high mangrove.

The closed forest class refers to most of the dense humid forest in the region
which are considered old and mature secondary forest. There are only few small
patches of the primary forest in the eastern part of the study area and south of the
city of Lambarene. These are often isolated patches on higher elevation and are
predominantly evergreen tall trees with closed canopy. The surrounding old second-
ary forest contains many deciduous trees. Both JERS-1 and ERS-1 signatures over
these forests show almost no variation in texture or backscatter values.

The open forest class consist of young secondary regrowth, intensely logged or
disturbed forest, and a mixture of forest and cultivation within the 100m resolution
of the image data. The forest has an open canopy with a low density of tall trees. In
most cases, the open canopy allows light penetration within the forest which in turn
causes the growth of several stages of light-loving herbs in the understorey. In optical
imagery, these open forests often appear lighter in infrared and therefore distinguished
from the primary forest. In L-band radar data, the open forest may appear in a
variety of backscatter and texture variations depending on the degree of openness,
biomass density level, and the dominance of fast growing single trees (Rignot et al.
1997, Saatchi et al. 1997, 2000).

The land cover formations of the � ood plains along the Ogooué are often over
poorly drained soil and can be periodically or frequently � ooded. We have identi� ed
three vegetation types among these formations. The � ooded forest includes all areas
with woody vegetation and dense canopy. The grass swamp class includes several
herbaceous plants, mainly papyrus, tall grasses, shrubs and some low density woody
plants that are waterlogged for most of the year (see � gure 2(a)). The RaYa swamps
are primarily open canopy dominated by RaYa palms (Raphia farinifera) and low
vegetation.

The mangrove vegetation types are found along the coasts, rivers and creeks in
the intertidal zone where the in� uence of sea water is signi� cant. Along the coastal
area of Gabon, a large area is covered by Rhizophora racemosa which have looping
aerial roots and downward growing shoots (see � gure 2(b)). In the low mangrove
areas, mainly Avicennia germinans in the form of low scrub or stunted plants with
pneumatophores. We also include in the low mangrove class areas of short
Rhizophora harrisonii (<5 m).

The urban class is easily distinguished on the SAR images because man made
structures act as corner re� ectors. The two major urban areas in the image are the
city of Libreville and Port-Gentil at the Baie of Cap Lopez.

The savanna classes are uniquely documented on the resulting land cover map
(� gure 5). Here, we have used two types of savanna vegetation which are primarily
based on their woody biomass: grass savanna and woody savanna.

4. Methodology
We use the decision tree method described in Simard et al. (2000) which is based

on the algorithm of Breiman et al. (1984). A decision tree is a hierarchical set of
rules. Each rule (or node) splits data into two groups (child nodes) which are purer
then the input group (father node). The decision rule maximizes the reduction of
impurity measured by the Gini criterion which is de� ned as follow:

1 æ
j
p2 ( j |t ) (1)
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It assigns a sample randomly selected from node t to a thematic class j with
probability p( j |t ). The sum over j allows for a global decision which emphasizes the

purity of the groups rather than the purity of individual classes. For each node in

the decision tree including the initial decision, the algorithm searches for the best

split by iteratively selecting a threshold on one feature. Then, the reduction of

impurity computed for all thresholds on all features are compared and only the best

split is selected. Each decision rule is univariate. The result is a hierarchy of decisions
which form the decision tree. Thus, using the Gini criterion the decision tree algorithm

chooses the best univariate splits for cleaning the input training set group.

There is a � nal step called pruning that is meant to generalize the decision tree

by cutting branches. Each node of the initial decision tree is evaluated in terms of

the classi� cation error rate on the training set using a cost-complexity function

(Breiman et al. 1984). Then, the weakest nodes are successively cut to produce a

sequence of smaller decision trees T
k
. Finally, the second training dataset is used to

test this sequence. The optimum and � nal decision tree is the one with least overall

misclassi� cation rate on the second training set. Each terminal node (following � nal

split ) is labelled with the class which has the maximum proportion of sample

(memberships) in a given terminal node. For more details, the reader is referred to

Breiman et al. (1984) or Simard et al. (2000).

In addition to the ERS and JERS amplitude images, we computed multiscale

texture maps using the wavelet transform (Simard et al. 1998). The same transform

also provides low resolution images. Each texture map contains a measure of the
local spatial variation content of the original image within a scale interval. This type

of texture measure can be useful because large scale heterogeneities in the land cover

(e.g. degradation, gaps, diVerent targets, etc.) cause image texture (Weishampel et al.

1994) that can be used for discrimination of land cover types (Miranda et al. 1992,

Nezry et al. 1993, Oliver and White 1994, Verhoeye 1996, Rignot et al. 1997, Yanasse

et al. 1997, De Grandi et al. 2000b). However, image texture measures are also

strongly in� uenced by the spatial resolution and speckle noise. In the case of CAMP
and GRFM radar images, the equivalent number of looks is about 60 and therefore,

we expect the spatial intensity variation due to land cover structures to become

larger with respect to noise induced variation (Simard et al. 2000).

Moreover, we use the amplitude ratio feature to enhance diVerences in the

datasets and possibly reduce the decision tree size. For example, if two classes can

be separated in the ERS–JERS amplitude feature plane by a diagonal threshold, the

mean ratio represents its slope. Otherwise, many splits might be required to obtain
the same results. Finally, each class is described by a feature vector containing its

label (class) and the following nine features:

d 100 m JERS-1 amplitude data (for reference in � gure 4: feature code 0)
d 100 m ERS-1 amplitude data (code 1)
d 200 m JERS-1 amplitude data (code 2)
d 200 m ERS-1 amplitude data (code 3)
d 200 m ERS-1 texture map (code 4)
d 200 m JERS-1 texture map (code 5)
d 400 m ERS-1 texture map (code 6)
d 400 m JERS-1 texture map (code 7)
d 100 m Ratio: JERS/ERS (code 8)
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Figure 4. Decision tree classi� er. The terminal nodes class labels are inferred from table 1.
Each node Ab is characterized by a split A on feature b. The features are in the same
order as in the text. Each branch is labelled with l or h meaning lower or higher than
threshold A on feature b. The bottom two decision trees are the extensions of the top
decision tree.

The decision tree classi� er is a supervised method which requires two sets of
independent training data which are selected such that intraclass variability is well
sampled. The training sets are selected using the land cover map provided by the
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Table 1. Class memberships for ERS–JERS classi� cation decision tree in %.

Class Open Grass Woody Flooded Low High
node Forest forest Urban savanna savanna RaYa forest Swamp mangrove mangrove

0 1 0 0 99 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
2 2 1 0 2 85 1 0 0 0 3
3 0 0 0 0 0 0 0 8 0 0
4 0 1 0 0 0 0 0 5 0 0
5 0 1 0 0 0 0 0 71 0 0
6 1 1 0 0 0 0 1 7 1 0
7 0 2 0 0 0 0 0 1 0 0
8 6 1 0 0 0 0 0 1 1 0
9 1 0 0 0 0 2 1 1 1 1

10 7 78 0 0 0 0 0 5 0 0
11 35 18 0 0 0 1 7 5 0 0
12 32 1 0 0 0 1 6 0 1 10
13 3 0 0 0 12 1 1 0 1 0
14 3 1 0 0 2 0 0 0 0 87
15 3 1 0 0 0 0 1 0 0 1
16 0 0 0 0 2 0 0 0 7 0
17 1 0 0 0 0 12 9 0 0 0
18 6 0 0 0 0 2 26 0 0 0
19 1 0 0 0 0 56 16 0 0 0
20 1 0 0 0 0 5 11 0 1 0
21 0 0 0 0 0 5 1 1 2 0
22 0 0 0 0 0 2 5 0 1 0
23 3 0 0 0 0 19 22 2 86 0
24 2 0 2 0 0 1 0 0 2 0
25 1 0 0 0 0 0 0 0 0 0
26 0 0 99 0 0 0 0 0 0 0

Ministère des eaux de Forêts et du Reboisement as a geographical guideline and were
veri� ed by ground survey. In the GRFM and CAMP data, the intraclass variability
is mainly due to the distribution of land cover structures which results in a random
distribution of both image radiometry and texture. We sample these spatial variations
by using large sampling windows in stationary areas. We must also sample areas
near non-stationary points, where more mixed pixels and discontinuities (edges) are
present. For example, a grass savanna training area must cover regions lying near
and far from class boundaries which have diVerent textural properties because of
the edge which is detected by the texture measures. For each class we selected various
training sites to build the training sets.

The initial decision tree was grown using randomly 50% of the training samples
for each class and the remaining 50% were used for pruning. The � nal decision tree
is shown in � gure 4. It has 27 terminal nodes identi� ed from 0 to 26 and it explicitly
describes the decision process. The class memberships of its terminal nodes are given
in table 1.

5. Analysis and discussion
In this section, we discuss the various feature relationships and contributions as

inferred from the decision tree (� gure 4). The analysis is performed by identi� cation
of the parent splits that were decisive in discriminating classes:

1. The open forest class is discriminated from the closed forest class by the
relatively low backscatter in JERS-1 data (terminal nodes 10, 11, 12). The
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Figure 5. Land cover map of the west of Gabon. The simultaneous use of ERS-1 and JERS-1
allowed for better distinction of high and low � ooded vegetation classes.

remaining is discriminated by texture, because the forest training sets included
a region with signi� cant relief.

2. The urban area is mainly isolated after a split on ERS-1 texture (terminal
node 20). Thus C-band data is more sensitive to urban structures.

3. Woody and grass savannas are mainly in terminal nodes 0 and 2, respectively.
In the � rst case the low backscatter in ERS-1 diVerentiates grass savannas
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Table 2. Confusion matrix for ERS–JERS classi� cation.

Class Open Grass Woody Flooded Low High
node Forest forest Urban savanna savanna RaYa forest Swamp mangrove mangrove

Forest 68 23 0 0 0 0 2 0 3 0
Open 3 93 0 0 0 0 0 0 0 2
forest

Urban 0 0 100 0 0 0 0 0 0 0
Grass 0 0 0 90 9 0 0 0 0 0
savanna

Woody 1 0 0 0 100 0 0 0 0 0
savanna

RaYa 1 0 0 0 0 65 11 0 17 4
Flooded 5 0 0 0 0 11 44 0 36 0
forest

Swamp 3 5 0 0 1 0 1 86 0 0
Low 1 0 0 0 0 0 1 0 96 0
mangrove

High 0 0 0 0 0 0 0 0 0 99
mangrove

Table 3. Confusion matrix for ERS classi� cation.

Class Open Grass Woody Flooded Low High
node Forest forest Urban savanna savanna RaYa forest Swamp mangrove mangrove

Forest 58 21 0 0 12 0 1 0 5 0
Open 5 64 0 0 7 21 0 0 0 0
forest

Urban 0 0 100 0 0 0 0 0 0 0
Grass 0 0 0 90 0 0 0 9 0 0
savanna

Woody 71 0 0 0 0 0 0 0 28 0
savanna

RaYa 0 3 0 0 0 70 0 0 4 21
Flooded 1 11 0 2 52 7 3 0 13 6
forest

Swamp 1 3 0 5 1 0 0 85 2 0
Low 6 0 0 0 4 1 0 0 57 30
mangrove

High 0 0 0 0 15 0 0 0 4 79
mangrove

from woody savannas that have a higher backscatter in C-band data. The
split on JERS-1 node (amplitude value of 91 and feature code 2 (91_2)),
generally separates savannas (both woody and grass) from higher biomass
density vegetation (e.g. forests and � ooded classes), which is in agreement with
expectations (Kasischke et al. 1997).

4. The raYa, � ooded forest and low mangroves are signi� cantly mixed classes
(mainly terminal nodes 19 and 23). The decision tree shows that a large
portion of the � ooded forest areas will be classi� ed as high mangroves and
raYa depending on their spatial pattern (texture). However, JERS texture
(node 25_5) contributes to isolate most of the low mangroves from � ooded
forest and raYa.

5. The grass swamps are mainly found in terminal nodes 3–6. It is a split on
ERS (node 77_3) which separates grass swamps from forests and � ooded
vegetation classes. The grass swamps which have a low backscatter in ERS
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Table 4. Confusion matrix for JERS classi� cation.

Class Open Grass Woody Flooded Low High
node Forest forest Urban savanna savanna RaYa forest Swamp mangrove mangrove

Forest 56 3 0 0 0 0 0 0 4 34
Open 0 72 0 0 0 0 0 5 0 21
forest

Urban 0 0 91 0 0 0 0 0 8 0
Grass 0 0 0 100 0 0 0 0 0 0
savanna

Woody 0 0 0 9 90 0 0 0 0 0
savanna

RaYa 2 0 0 0 0 55 22 1 17 0
Flooded 5 0 2 0 1 33 16 1 38 0
forest

Swamp 10 20 0 0 2 13 0 10 42 0
Low 0 0 0 0 0 0 0 0 100 0
mangrove

High 14 10 0 0 0 0 0 1 0 74
mangrove

data are then separated from savannas (node 91_2) due to a relatively high
backscatter in JERS data (see � gure 3). The grass swamps areas are composed
mainly of papyrus, tall grasses, shrubs and low woody vegetation which trigger
some double bounce eVect at L-band, while volume scattering and attenuation
occur at C-band within the herbaceous vegetation.

6. The high mangrove class is easily separated from other classes using JERS
and ERS together (splits 120_2 and 103_3) because of the low backscatter in
JERS-1 LHH data and relatively high backscatter in ERS-1 CVV (see � gure 3).
For high biomass densities (about 300 tonnes of dry matter per ha), the main
scattering mechanism for L- and C-bands is volume scattering. The multiple
interaction component at L-band is important (Proisy et al. 2000), however,
in the present case the strong attenuation and reduced double bounce also
occur due to the spatially dense aerial roots which leads to low backscatter
(see � gure 2(a)). The absence of enhanced backscatter was also observed in
other studies for high mangroves (Hess et al. 1990). At C-band, scattering
saturates in the canopy and thus remains equal for both low and high
mangroves.

7. Flooded vegetation classes as a whole (grouping raYa, � ooded forest and low
mangroves) are easily discriminated from other classes by the strong L-band
backscatter, which stems from the double bounce scattering between the water
surface and tree structures. A relatively high backscatter is also observed for
� ooded classes in the CAMP ERS-1 data which is most likely due to some
double bounce but also to canopy structure.

Some features were not used in the decision tree. That is the case for the 100 m
ERS-1 amplitude data, the 200m ERS texture and the 100m JERS data (only used
for 1% of closed forest sample in node 1). Their exclusion does not mean the feature
are useless, but that other features were better. The consequence is a decrease in the
classi� cation spatial resolution. However, this is the compromise to obtain a high
overall classi� cation accuracy (Simard et al. 2000).

The classi� ed land cover map is presented in � gure 5. A water mask was used to
segment ocean, lakes and main rivers. To validate the map, an independent test set
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was established by selecting new training areas for each class in diVerent geographical
areas of the map which also matched with our ground survey. The corresponding
confusion matrix for the ERS–JERS classi� cation is shown in table 2. We also
computed the confusion matrices for classi� cation using only ERS or JERS which
are shown in tables 3 and 4. The overall classi� cation rates are 84, 61 and 66% for
ERS–JERS, ERS and JERS, respectively. The Kappa coeYcient is 0.8, which is
considered very good. In general, the comparison of the confusion matrices for ERS
(table 3) and JERS (table 4) show that the oV-diagonal elements (errors) are dispersed
diVerently in the matrices. Thus, the combined use of the two datasets is expected
to improve results. The ERS misclassi� cation is high for most classes except urban,
grass savanna and grass swamps. The mixed classes involve mainly � ooded vegetation
classes and the woody savanna class. In the JERS case, misclassi� cation is mainly
due to commission and omission errors with the low mangrove class, and confusion
between the � ooded vegetation classes (� ooded vegetation, low mangroves and
raYa). The grass swamp class is not discriminated. In the combined ERS–JERS
classi� cation, the main misclassi� cation occurs between the � ooded vegetation
classes: raYa and � ooded forest with low mangroves and there is also confusion of
the closed forest and the open forest classes.

6. Conclusion
We investigated the combined use of JERS-1 GRFM and ERS-1 CAMP (L- and

C-band) SAR data for large area mapping of tropical coastal areas. The analysis
was performed using a decision tree classi� er. It was shown that, due to the comple-
mentary characteristics of the two sensors, overall classi� cation results derived from
the combined L-band and C-band SAR datasets are improved by 18% with respect
to the single band case. Those results could be improved by mainly merging � ood
classes.

Our ground survey data collected in July 2000 showed correspondence of the
image training site with reality. However, the high overall classi� cation accuracy
(84%) is applicable to this entire map except for areas with topography in the eastern
part of the region where SAR data is not as reliable. The main individual classi� cation
accuracy improvement was observed for high mangroves which are indistinguishable
using only one dataset. Improvement in the classi� cation accuracy of the forest
classes and � ooded forest are also signi� cant. Some classes, such as grass swamps
which are well classi� ed with ERS only, and woody savannas discriminated with
JERS data, are also well classi� ed using both dataset.

The decision tree diagram showed that the use of low resolution data and
combined use of ERS and JERS amplitude data were the most useful features.
However, new methods for producing full resolution land cover maps using multi-
resolution data should be developed to obtain similar classi� cation results.
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Ministère des eaux et forêts et du reboisement (March 1998), Formations végétales
(1:200000).

Proisy, C., Mougin, E., Fromard, F., and Karam, M. A., 2000, Interpretation of polarimetric
radar signatures of mangrove forests. Remote Sensing of Environment, 71, 56–66.

Richards, P. W., 1979, T he T ropical Rain Forest (Cambridge: Cambridge University Press).

http://florence97.erssymposium.org/
http://florence97.erssymposium.org/
http://esapub.esrin.esa.it/eoq
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0703-8992^28^2924L.339[aid=2234852]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0196-2892^28^2937L.1730[aid=658951]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0196-2892^28^2938L.2218[aid=2234864]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0143-1161^28^299L.927[aid=656134]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0143-1161^28^2911L.1313[aid=655920]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0196-2892^28^2933L.896[aid=652807]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0034-4257^28^2959L.141[aid=652803]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0034-4257^28^2960L.1[aid=658396]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0143-1161^28^2923L.1261[aid=2234865]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0143-1161^28^2913L.2349[aid=654318]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0143-1161^28^2914L.2165[aid=654225]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0361-0748^28^292230L.389
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0034-4257^28^2971L.56[aid=2234867]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0703-8992^28^2924L.339[aid=2234852]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0196-2892^28^2937L.1730[aid=658951]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0196-2892^28^2938L.2218[aid=2234864]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0196-2892^28^2933L.896[aid=652807]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0143-1161^28^2923L.1261[aid=2234865]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0143-1161^28^2914L.2165[aid=654225]


Global Rain Forest Mapping1474

Rignot, E., Sales, W., and Skole, D., 1997, Mapping of deforestation and secondary growth
in Rondonia, Brazil, using imaging radar and thematic mapper data. Remote Sensing
of Environment, 59, 167–179.

Rosenqvist, A., 1996, The global rain forest mapping project by JERS-1 SAR. International
Archives of Photogrammetry and Remote Sensing, Vol. 31, Part B7, pp. 594–598,
(Vienna, Austria: ISPRS).

Saatchi, S., Soares, J., and Alves, D., 1997, Mapping deforestation and land use in Amazon
Rainforest by using SIR-C imagery. Remote Sensing of Environment, 59, 191–202.

Saatchi, S., Nelson, B., Podest, E., and Holt, J., 2000, Mapping land cover types in the
Amazon Basin using 1 km JERS-1 mosaic. International Journal of Remote Sensing,
21, 1201–1234.

Simard, M., De Grandi, F., and Thomson, K., 1998, Adaptation of the wavelet transform for
the construction of multiscale texture maps of SAR images. Canadian Journal of Remote
Sensing, 24, 264–285.

Simard, M., Saatchi, S., and De Grandi, F., 2000, The use of decision tree and multiscale
texture for classi� cation of JERS-1 SAR data over tropical forest. IEEE T ransactions
on Geoscience and Remote Sensing, 38, 2310–2321,

Verhoeye, J., 1996, Research on the capabilities of ERS SAR for monitoring of land use
changes in the neotropics. Final Report, Laboratory of Forest Management and
Spatial Information Techniques, University Gent, Belgium.

Weishampel, J., Sun, G., Ranson, K., Lejeune, K., and Shugart, H., 1994, Forest textural
properties from simulated microwave backscatter: the in� uence of spatial resolution.
Remote Sensing of Environment, 47, 120–131.

White, F., 1983, The vegetation of Africa: a description memoir to accompany the UNESCO/
AEFTAT/UNSO Vegetation Map of Africa. UNESCO, Paris.

Yanasse, C. da C. F., Sant’Anna, S. J. S., Frery, A. C., Renno’ , C. D., Soares, J. V., and
Luckman, A. J., 1997, Exploratory study of the relationship between tropical forest
regeneration stages and SIR-C L and C data. Remote Sensing of Environment, 59,
180–190.

http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0034-4257^28^2959L.167[aid=8933]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0034-4257^28^2959L.191[aid=658848]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0143-1161^28^2921L.1201[aid=658821]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0703-8992^28^2924L.264
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0196-2892^28^2938L.2310[aid=2234868]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0034-4257^28^2947L.120[aid=655951]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0034-4257^28^2959L.180[aid=1921018]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0034-4257^28^2959L.167[aid=8933]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0143-1161^28^2921L.1201[aid=658821]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0703-8992^28^2924L.264
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0196-2892^28^2938L.2310[aid=2234868]
http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0034-4257^28^2959L.180[aid=1921018]

